Bounds of Eigenvalues of K3,3-Minor Free Graphs
نویسندگان
چکیده
The spectral radius ρ G of a graph G is the largest eigenvalue of its adjacency matrix. Let λ G be the smallest eigenvalue of G. In this paper, we have described the K3,3-minor free graphs and showed that A let G be a simple graph with order n ≥ 7. If G has no K3,3-minor, then ρ G ≤ 1 √3n − 8. B LetG be a simple connected graph with order n ≥ 3. IfG has noK3,3-minor, then λ G ≥ −√2n − 4, where equality holds if and only if G is isomorphic to K2,n−2.
منابع مشابه
On the number of graphs not containing K3,3 as a minor
We derive precise asymptotic estimates for the number of labelled graphs not containing K3,3 as a minor, and also for those which are edge maximal. Additionally, we establish limit laws for parameters in random K3,3-minor-free graphs, like the expected number of edges. To establish these results, we translate a decomposition for the corresponding graph class into equations for generating functi...
متن کاملNC Algorithms for Perfect Matching and Maximum Flow in One-Crossing-Minor-Free Graphs
In 1988, Vazirani gave an NC algorithm for computing the number of perfect matchings in K3,3-minor-free graphs by building on Kasteleyn’s scheme for planar graphs, and stated that this “opens up the possibility of obtaining an NC algorithm for finding a perfect matching in K3,3-free graphs.” In this paper, we finally settle this 30-year-old open problem. Building on the recent breakthrough resu...
متن کاملThe Number of Graphs Not Containing K3, 3 as a Minor
We derive precise asymptotic estimates for the number of labelled graphs not containing K3,3 as a minor, and also for those which are edge maximal. Additionally, we establish limit laws for parameters in random K3,3-minor-free graphs, like the number of edges. To establish these results, we translate a decomposition for the corresponding graphs into equations for generating functions and use si...
متن کامل1 Every longest circuit of a 3-connected, K3,3-minor free graph has a chord
Carsten Thomassen conjectured that every longest circuit in a 3-connected graph has a chord. We prove the conjecture for graphs having no K3,3 minor, and consequently for planar graphs. Carsten Thomassen made the following conjecture [1, 7], where a circuit denotes a connected 2-regular graph: Conjecture 1 (Thomassen) Every longest circuit of a 3-connected graph has a chord. That conjecture has...
متن کامل-λ coloring of graphs and Conjecture Δ ^ 2
For a given graph G, the square of G, denoted by G2, is a graph with the vertex set V(G) such that two vertices are adjacent if and only if the distance of these vertices in G is at most two. A graph G is called squared if there exists some graph H such that G= H2. A function f:V(G) {0,1,2…, k} is called a coloring of G if for every pair of vertices x,yV(G) with d(x,y)=1 we have |f(x)-f(y)|2 an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009